MOPSA: A microfluidics-optimized particle simulation algorithm.

نویسندگان

  • Junchao Wang
  • Victor G J Rodgers
  • Philip Brisk
  • William H Grover
چکیده

Computer simulation plays a growing role in the design of microfluidic chips. However, the particle tracers in some existing commercial computational fluid dynamics software are not well suited for accurately simulating the trajectories of particles such as cells, microbeads, and droplets in microfluidic systems. To address this issue, we present a microfluidics-optimized particle simulation algorithm (MOPSA) that simulates the trajectories of cells, droplets, and other particles in microfluidic chips with more lifelike results than particle tracers in existing commercial software. When calculating the velocity of a particle, MOPSA treats the particle as a two-dimensional rigid circular object instead of a single point. MOPSA also checks for unrealistic interactions between particles and channel walls and applies an empirical correcting function to eliminate these errors. To validate the performance of MOPSA, we used it to simulate a variety of important features of microfluidic devices like channel intersections and deterministic lateral displacement (DLD) particle sorter chips. MOPSA successfully predicted that different particle sizes will have different trajectories in six published DLD experiments from three research groups; these DLD chips were used to sort a variety of different cells, particles, and droplets. While some of these particles are not actually rigid or spherical, MOPSA's approximation of these particles as rigid spheres nonetheless resulted in lifelike simulations of the behaviors of these particles (at least for the particle sizes and types shown here). In contrast, existing commercial software failed to replicate these experiments. Finally, to demonstrate that MOPSA can be extended to simulate other properties of particles, we added support for simulating particle density to MOPSA and then used MOPSA to simulate the operation of a microfluidic chip capable of sorting cells by their density. By enabling researchers to accurately simulate the behavior of some types of particles in microfluidic chips before fabricating the chips, MOPSA should accelerate the development of new microfluidic devices for important applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of the Compact Ultra-Wideband (UWB) Antenna Bandwidth Optimization Using Particle Swarm Optimization Algorithm

In this paper a particle swarm optimization (PSO) algorithm is presented to design a compact stepped triangle shape antenna in order to obtain the proper UWB bandwidth as defined by FCC. By changing the various cavity dimensions of the antenna, data to develop PSO program in MATLAB is achieved. The results obtained from the PSO algorithm are applied to the antenna design to fine-tune the bandwi...

متن کامل

Z- Source Inverter Based On Sample Boost Optimized With Particle Swarm Optimization (PSO) Algorithm

In this paper optimal torque control (OTC) of stand-alone variable-speed small-scale wind turbine equipped with a permanent magnet synchronous generator and a switch- mode rectifier is presented. It is shown that with OTC method in standalone configuration, power coefficient could be reached to its maximum possible value, i.e. 0.48. An appropriate control algorithm based on turbine characterist...

متن کامل

Solving a New Priority M/m/c Queue Model for a Multi- Mode Hub Covering Location Problem by Multi- Objective Parallel Simulated Annealing

In this paper, a new priority M/M/c queuing hub covering problem is presented, in which products with high priority are selected for service ahead of those with low priority. In addition, a mixed-integer nonlinear mathematical programming model is presented to find a good solution of the given problem. Due to its computational complexity, we propose a multi-objective parallel simulated annealin...

متن کامل

Dynamics analysis of microparticles in inertial microfluidics for biomedical applications

Inertial microfluidics-based devices have recently attracted much interest and attention due to their simple structure, high throughput, fast processing and low cost. They have been utilised in a wide range of applications in microtechnology, especially for sorting and separating microparticles. This novel class of microfluidics-based devices works based on intrinsic forces, which cause micropa...

متن کامل

Improvement of Left Ventricular Assist Device (LVAD) in Artificial Heart Using Particle Swarm Optimization

In this approach, the Left ventricular assist pump for patients with left ventricular failure isused. The failure of the left ventricle is the most common heart disease during these days. Inthis article, a State feedback controller method is used to optimize the efficiency of a samplingpump current. Particle Swarm Algorithm, which is a set of rules to update the position andvelocity, is applied...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomicrofluidics

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2017